\qquad Date \qquad Period \qquad

Half Life:

Calculating half-life Sample Problem \#1

If 100.0 g of carbon- 14 decays until only 25.0 g of carbon is left after $11,460 \mathrm{y}$, what is the halflife of carbon-14?

- Analyze the data:
- If you started with 100.0 g and now have 25 g , how many half-lives must have passed?
- 100.0---- $50.0---\rightarrow 25.0$
- Two half-lives have passed.
- If a total of 11,460 years is TWO half-lives, then 11,460/2 is the half-life: 5,730 years.
- Answer: The half-life of Carbon-14 is 5,730 years

Sample Problem\#2

Thallium-208 has a half-life of 3.053 min . How long will it take for 120.0 g to decay to 7.50 g ?

- Analyze the data:
- You are starting with 120.0 g and ending with 7.50 g
- Half of 120.0 is 60.0 . Half of that is 30.0 . Half of that is 15.0 g . Half of that is 7.5 g .
- Therefore the sample has halved 4 times, or gone through 4 half-lives.
- If 4 half-lives have passes and you know that the time for a half-life is 3.053 min , then...
- $4 \times 3.053=12.21 \mathrm{~min}$
- Answer: It will take 12.21 min for 1250.0 g of $\mathrm{Tl}-208$ to decay to 7.50 g

Sample Problem \#3

Gold-198 has a half-life of 2.7 days. How much of a 96 g sample of gold- 198 will be left after 8.1 days?

- Analyze the data:
- The half-life is 2.7 days. The time it has been left to decay is 8.1 days. 2.7 goes into 8.7 three times. This means that 3 half-lives have passed.
- If you are starting with 96 g and three half-lives have passed, then...
(1 h.l) (2 h.l.) (3 h.l.)
$96--->48---\rightarrow 24--->12$
- That means that 12 grams of the 96 grams are left.

Your Turn to Think...

1. Define half-life:
2. If we start with 400 atoms of a radioactive substance, how many atoms would remain after one halflife?
After two half-lives? \qquad ; after three half-lives? \qquad ; after four half-lives? \qquad
3. If we start with 48 atoms of a radioactive substance, how many would remain after one halflife?
After two half-lives? \qquad ; after three half-lives? \qquad ; after four half-lives? \qquad
4. If the half-life of iodine- 131 is 8 days, how long will it take a 50.00 g sample to decay to 6.25 g ?
5. The half-life of hafnium-156 is 0.025 s . How long will it take a 560 g sample to decay to onefourth its original mass?
6. If we start with 8000 grams of radium-226, how much would remain after 3,200 years? The half-life of Ra-226 is 1600 years
a. How much would have decayed in that amount of time? \qquad
7. How many years would have to pass for a 75% of a 400 grams sample of Uranium- 238 to decay? The half-life of U-238 is 4.47×10^{9} years)
8. How much time would it take for a 500 gram sample of Iodine- 131 to decay to 31.25 grams? The half-life of $\mathrm{I}-131$ is 8 days
b. How many half-lives is that?

Use the following graph of the decay of Strontium-90 to answer the following questions:

18. How long is a half-life for $\mathrm{Sr}-90$?
19. If only 25% of the Sr- 90 remains, how many years have passed? \qquad
20. If a sample originally contained 100 grams of $\mathrm{Sr}-90$, how many grams of $\mathrm{Sr}-90$ would remain after 112.4 years?
a. How many grams of the $\mathrm{Sr}-90$ would have been decayed after 112.4 years?
21. If a sample known to be about 140.5 years old has 400 grams of $\mathrm{Sr}-90$ in it, how many grams of $\mathrm{Sr}-90$ were in the sample 140.5 years ago?

